Rapid Inundation Mapping Using the US National Water Model, Satellite Observations, and a Convolutional Neural Network

Author:

Frame Jonathan M.12ORCID,Nair Tanya1,Sunkara Veda1,Popien Philip1,Chakrabarti Subit1ORCID,Anderson Tyler1,Leach Nicholas R.1,Doyle Colin1,Thomas Mitchell1,Tellman Beth1

Affiliation:

1. Floodbase Brooklyn NY USA

2. University of Alabama Tuscaloosa AL USA

Abstract

AbstractRapid and accurate maps of floods across large domains, with high temporal resolution capturing event peaks, have applications for flood forecasting and resilience, damage assessment, and parametric insurance. Satellite imagery produces incomplete observations spatially and temporally, and hydrodynamic models require tradeoffs between computational efficiency and accuracy. We address these challenges with a novel flood model which predicts surface water area from the U.S. National Water Model using a convolutional neural network (NWM‐CNN). We trained NWM‐CNN on 780 flood events, at a 250 m resolution with an RMSE of 4.58% on held out validation geographies. We demonstrate NWM‐CNN across California during the 2023 atmospheric rivers, comparing predictions against Sentinel‐1 mapped flood observations. We compared historical predictions from 1979 to 2023 to flood damage reports in Sacramento County, California. Results show that NWM‐CNN captures inundation extent better than the Height Above Nearest Drainage (HAND) approach (25%–36% RMSE, respectively).

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3