Improving Low‐Cloud Fraction Prediction Through Machine Learning

Author:

Zhang Haipeng12ORCID,Zheng Youtong34ORCID,Li Zhanqing12ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Science University of Maryland College Park MD USA

2. Earth System Science Interdisciplinary Center University of Maryland College Park MD USA

3. Department of Earth and Atmospheric Science University of Houston Houston TX USA

4. Institute of Climate and Atmospheric Science University of Houston Houston TX USA

Abstract

AbstractIn this study, we evaluated the performance of machine learning (ML) models (XGBoost) in predicting low‐cloud fraction (LCF), compared to two generations of the community atmospheric model (CAM5 and CAM6) and ERA5 reanalysis data, each having a different cloud scheme. ML models show a substantial enhancement in predicting LCF regarding root mean squared errors and correlation coefficients. The good performance is consistent across the full spectrums of atmospheric stability and large‐scale vertical velocity. Employing an explainable ML approach, we revealed the importance of including the amount of available moisture in ML models for representing spatiotemporal variations in LCF in the midlatitudes. Also, ML models demonstrated marked improvement in capturing the LCF variations during the stratocumulus‐to‐cumulus transition (SCT). This study suggests ML models' great potential to address the longstanding issues of “too few” low clouds and “too rapid” SCT in global climate models.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3