Effects of a Vertical Cloud Condensation Nuclei Concentration Explosion in an Idealized Hailstorm Simulation

Author:

Ma Rongjun1,Li Xiaofei123ORCID

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity & Xi'an Institute of Meteorological Science and Technology Northwest University Xi'an China

2. Shaanxi Key Laboratory for Carbon Neutral Technology Yulin Institute of Carbon Neutrality Xi'an China

3. Faculty of Data Science City University of Macau Macau China

Abstract

AbstractDetermination of the key vertical level for cloud condensation nuclei concentration (CCNC) explosions has been a long‐term issue in CCN‐cloud interaction studies. An idealized hailstorm is simulated with 37 sensitivity runs, including an initial CCNC grouping vertically from the ground to the cloud top, increasing from 100 to 3,000 mg−1. The results reveal a key zone from 750 to 800 hPa near the median boundary layer, where an explosion of CCNC plays a dominant role in the nonmonotonic response of the hail precipitation rate. The explosion of CCNC in this zone could initially result in the condensation of more water vapor into the clouds, which could be transported to a greater vertical extent to significantly affect the riming collection efficiency. However, the dominant zone for the total precipitation rate is wider at heights of 700–800 hPa due to the lower sensitivity of the riming collection efficiency.

Funder

National Natural Science Foundation of China

Education Department of Shaanxi Province

Xi'an Science and Technology Association

Shaanxi Provincial Science and Technology Department

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3