Unraveling the Light‐Absorbing Properties of Brown Carbon at a Molecular Level

Author:

Xu Nan1ORCID,Hu Min12ORCID,Li Xiao1,Zeng Linghan1ORCID,Wang Yujue1ORCID,Qiu Yanting1,Song Kai1,Li Shuangde3,Shuai Shijin4,Chen Yunfa3,Hu Jianlin25ORCID,Guo Song1ORCID

Affiliation:

1. State Key Joint Laboratory of Environmental Simulation and Pollution Control International Joint Laboratory for Regional Pollution Control Ministry of Education (IJRC) College of Environmental Sciences and Engineering Peking University Beijing China

2. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Nanjing University of Information Science & Technology Nanjing China

3. State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing China

4. State Key Laboratory of Automotive Safety and Energy Tsinghua University Beijing China

5. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing University of Information Science & Technology Nanjing China

Abstract

AbstractBrown carbon (BrC) exhibits a highly complex chemical composition with diverse light‐absorbing properties, which complicates our understanding of its climate impacts. This study examined the impact of molecular characteristics (including molecular mass, unsaturation, oxidation state, and polarity) and heteroatoms on the light‐absorbing properties (absorptivity and wavelength dependence) of BrC from a molecular perspective, based on the ultraviolet‐visible spectra of over 40,000 light‐absorbing substances in aerosol from different sources and ambience. Our findings reveal that the light‐absorptivity of BrC molecules increases with decreasing polarity and O/C ratio, while it rises with higher molecular mass and unsaturation. We developed predictive models for molecular absorptivity based on its double bond equivalent and O/C ratio. In addition, we observed an inverse correlation between absorptivity and wavelength dependence at the molecular level, as determined through mathematical analysis. This molecular‐level understanding provides valuable insights into BrC absorbing mechanisms, facilitating more accurate characterization in atmospheric models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3