Human Impacts Dominate Global Loss of Lake Ecosystem Resilience

Author:

Han Yaoyao12,Lin Qi1,Huang Shixin3ORCID,Du Chenliang3,Shen Ji3,Zhang Ke1ORCID

Affiliation:

1. Key Laboratory of Lake and Watershed Science for Water Security Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Nanjing China

2. University of Chinese Academy of Sciences Beijing China

3. School of Geography and Ocean Science Nanjing University Nanjing China

Abstract

AbstractStrengthening aquatic resilience to prevent adverse shifts is critical for preserving global freshwater biodiversity and advancing Sustainable Development Goals. Nonetheless, understanding the long‐term trends and underlying causes of lake ecosystem resilience at a global scale remains elusive. Here, we employ an innovative framework, integrating satellite‐derived water quality indices with early warning signals and machine learning techniques, to investigate the dynamics of resilience in 1,049 lakes worldwide during 2000–2018. Our results indicate that 46.7% of lakes are experiencing a significant decline in resilience, particularly since the early 2010s, closely associated with higher human population density and anthropogenic eutrophication. In contrast, most lakes situated in alpine regions exhibit an increase in resilience, probably benefiting from climate warming and wetting. Together, this study provides a novel way to monitor lake resilience and predict undesired transitions, and reveals a widespread erosion in the ability of lakes to withstand stressors associated with global change.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Science and Technology Planning Project

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3