Influence of Western Pacific Madden–Julian Oscillation on New York City's Record‐Breaking Air Pollution in Early June 2023

Author:

Zhu Yan1,Hsu Pang‐chi1ORCID,Qian Yitian1ORCID

Affiliation:

1. Key Laboratory of Meteorological Disaster Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environmental Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractIn early June 2023, New York City (NYC) and other cities in the northeastern US experienced a severe air pollution event. Although reports associated this hazardous pollution event with the smoke from Canadian wildfires, the factors triggering the southward waft of the smoke remain unclear. We found the northerly anomaly that transported the smoke was linked to the Rossby wave train excited by the Madden–Julian Oscillation (MJO) over the Philippine Sea, which led to the formation of an enhanced northerly at the western edge of the cyclonic anomaly over the East Coast–North Atlantic. When the MJO convection left the western Pacific, the disorganized teleconnection caused the pollution to dissipate. Observational findings were further supported by model simulations and predictions. These results suggest that monitoring and predictions of MJO activity may help mitigate air pollution events over the northeastern US during Canadian wildfire seasons.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3