Butterfly Distributions of Energetic Electrons Driven by Ducted and Nonducted Chorus Waves

Author:

Ke Yangguang12ORCID,Gao Xinliang12ORCID,Lu Quanming12ORCID,Wang Xueyi3ORCID,Chen Rui12ORCID

Affiliation:

1. CAS Key Lab of Geospace Environment School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. CAS Center for Excellence in Comparative Planetology Hefei China

3. Physics Department Auburn University Auburn AL USA

Abstract

AbstractBursts of electron butterfly distributions at 10s keV correlated with chorus waves are frequently observed in the Earth's magnetosphere. Strictly ducted (parallel) upper‐band chorus waves are proposed to cause them by nonlinear cyclotron trapping. However, chorus waves in these events are probably nonducted or not strictly ducted. In this study, test‐particle simulations are conducted to investigate electron scattering driven by ducted (quasi‐parallel) and nonducted upper‐band chorus waves. Simulation results show butterfly distributions of 10s keV electrons can be created by both ducted and nonducted upper‐band chorus waves in seconds. Ducted upper‐band chorus waves cause these butterfly distributions mainly by accelerating electrons due to cyclotron phase trapping. However, nonducted waves tend to decelerate electrons to form these butterfly distributions via cyclotron phase bunching. Our study provides new insights into the formation mechanisms of electron butterfly distributions and demonstrates the importance of nonlinear interactions in the Earth's magnetosphere.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3