Dwindling Effective Radiative Forcing of Large Volcanic Eruption: The Compensation Role of Ocean Latent Heat Flux

Author:

Gao Ya12,Gao Chaochao12ORCID

Affiliation:

1. College of Environmental and Resource Science Zhejiang University Hangzhou China

2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control Hangzhou China

Abstract

AbstractClimatic impacts of historical volcanism are principally tied to the eruption size, while observation versus model discrepancies have been commonly attributed to the uncertainties in paleo‐reconstruction or malpresentation of volcanic aerosols in models. Here we present convergent evidence for significant compensation effect of ocean latent heat (LH) in balancing the tropical volcanic‐induced heat loss, by introducing an effective perturbation ratio which is found to decrease with increasing eruption magnitude. Four LH compensation hot spots overlapping with the trade wind regions are identified, together with three western boundary currents regions with intensified LH loss. Comparison between the 1258 Samalas and 1452 Unidentified eruptions suggests considerable modulation of the concurring El Nino‐Southern Oscillation on LH anomaly, which is further verified by CESM large ensemble sensitivity experiments. This study depicts how the interplay between the ocean and the atmosphere could contribute to the overall resilience of the climate system in the face of volcanic disturbances.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3