Thermoelastic Anomaly of Iron Carbonitride Across the Spin Transition and Implications for Planetary Cores

Author:

Huang Shengxuan12ORCID,Wu Xiang3ORCID,Chariton Stella4,Prakapenka Vitali4ORCID,Qin Shan1ORCID,Chen Bin5ORCID

Affiliation:

1. Key Laboratory of Orogenic Belts and Crustal Evolution MOE Peking University and School of Earth and Space Sciences Peking University Beijing China

2. Now at Geodynamics Research Center Ehime University Matsuyama Japan

3. State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences Wuhan China

4. Center for Advanced Radiation Sources University of Chicago Chicago IL USA

5. Hawaiʻi Institute of Geophysics and Planetology University of Hawaiʻi at Mānoa Honolulu HI USA

Abstract

AbstractCarbon and nitrogen are considered as candidate light elements present in planetary cores. However, there is limited understanding regarding the structure and physical properties of Fe‐C‐N alloys under extreme conditions. Here diamond anvil cell experiments were conducted, revealing the stability of hexagonal‐structured Fe7(N0.75C0.25)3 up to 120 GPa and 2100 K, without undergoing any structural transformation or dissociation. Notably, the thermal expansion coefficient and Grüneisen parameter of the alloy exhibit a collapse at 55–70 GPa. First‐principles calculations suggest that such anomaly is associated with the spin transition of iron within Fe7(N0.75C0.25)3. Our modeling indicates that the presence of ∼1.0 wt% carbon and nitrogen in liquid iron contributes to 9–12% of the density deficit of the Earth's outer core. The thermoelastic anomaly of the Fe‐C‐N alloy across the spin transition is likely to affect the density and seismic velocity profiles of (C,N)‐rich planetary cores, thereby influencing the dynamics of such cores.

Funder

National Science Foundation

National Natural Science Foundation of China

China Postdoctoral Science Foundation

SIMPLEX QUANTUM

Peking University

Division of Earth Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3