Affiliation:
1. Faculty of Engineering China University of Geosciences (Wuhan) Wuhan China
2. Department of Geotechnical Engineering College of Civil Engineering Tongji University Shanghai China
3. Department of Physical Geography Faculty of Geosciences Utrecht University Utrecht The Netherlands
Abstract
AbstractPore‐fluid pressure (PP) plays an important role in bed erosion, but the mechanisms that control PP evolution and the resulting feedbacks on flow dynamics are unclear. Here, we develop a general formulation, allowing quantification of the propensity for PP evolution of saturated and unsaturated bed sediments. We conduct erosion experiments by systematically varying grain composition and water content of beds, for investigating effects of PP evolution on flow erosion. With increasing water content, PP shows a slight rise in deforming beds with drained behavior but significant larger rise in undrained beds. Regardless of bed composition, the erosion rate of beds presents a synchronous change tendency with PP evolution due to the loss in basal friction. PP instigates positive feedback that induces a remarkable gain of flow velocity and momentum on wet beds with undrained behavior. Our results help explain observations of volume growth and long run out of debris flows.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献