Contrasting Recording Efficiency of Chemical Versus Depositional Remanent Magnetization in Sediments

Author:

Roud Sophie C.12ORCID,Gilder Stuart A.2ORCID

Affiliation:

1. Department of Earth Sciences Uppsala University Uppsala Sweden

2. Department of Earth and Environmental Sciences Ludwig‐Maximilians‐Universität München Munich Germany

Abstract

AbstractHow and when sedimentary rocks record Earth's magnetic field is complex. Most studies assume a time‐progressive lock‐in mechanism during sediment deposition called depositional remanent magnetization (DRM). However, magnetic minerals can also form in situ, recording a chemical remanent magnetization (CRM) that is discontinuous in time. Disentangling the two mechanisms represents a major hurdle, and differences in their recording efficiencies remain unexplored. Here, our theoretical solutions demonstrate that CRM intensities exceed DRM by a factor of six when acquired in the same magnetic field. Novel experiments growing greigite (Fe3S4) in sediments and subsequent redeposition under identical magnetic field conditions confirm the predicted difference in recording efficiency. Thus, if left unrecognized, CRM leads to overestimated paleointensity and deserves more attention when interpreting Earth's magnetic history from sedimentary records. Recognition of fundamental differences between CRM and DRM characteristics provide a way forward to distinguish the recording mechanisms through routine laboratory protocols.

Funder

Deutsche Forschungsgemeinschaft

Vetenskapsrådet

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3