Automated Quality Control Scheme for GPM Satellite Precipitation Products

Author:

Tan Jackson12ORCID,Huffman George J.1ORCID,Song Yi1

Affiliation:

1. NASA Goddard Space Flight Center Greenbelt MD USA

2. University of Maryland Baltimore MD USA

Abstract

AbstractThe constellation approach underpinning precipitation products such as the Integrated Multi‐satellitE Retrievals for GPM (IMERG) is key to achieving high resolution, but the use of data from multiple sources can unintentionally incorporate instrumental artifacts. Here, we introduce a machine learning–based anomaly detection scheme called SPEEDe, which processes a two‐dimensional precipitation field into a re‐estimated precipitation field that can be compared with the input. Large differences identify IMERG fields with bad orbit data, separating most of the bad cases from the good cases. When modified to process the passive microwave inputs, SPEEDe can pick out orbits with bad data, enabling quality control on these IMERG inputs. SPEEDe works by producing a locally realistic‐looking precipitation field when given unphysical data, which results in a larger‐than‐normal difference between the input and the output. SPEEDe is implemented as an automated quality control for GPM precipitation products.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3