Affiliation:
1. High Altitude Observatory National Center for Atmospheric Research Boulder CO USA
2. Goddard Space Flight Center National Aeronautics and Space Administration Greenbelt MD USA
3. Physics Department Catholic University of America Washington DC USA
Abstract
AbstractSubauroral red (SAR) arcs are commonly observed ionospheric red line emissions. They are usually attributed to subauroral electron heating by inner magnetospheric heat flux (IMHF). However, the role of IMHF in changing the ionosphere‐thermosphere (IT) still remains elusive. We conduct controlled numerical experiments with the Thermosphere‐Ionosphere Electrodynamic General Circulation Model (TIEGCM). Coulomb collisional heat flux derived with the Comprehensive Inner Magnetosphere Ionosphere (CIMI) model and empirical subauroral polarization streams (SAPS) are implemented in TIEGCM. The heat flux causes electron temperature enhancement, electron density depletion, and consequently SAR arcs formed in the dusk‐to‐midnight subauroral ionosphere region. SAPS cause more substantial plasma and neutral heating and plasma density variations in a broader region. The maximum enhancement of subauroral red line emission rate is comparable to that caused by the heat flux. However, the visibility of SAR arcs also depends on the relative enhancement to the background brightness.
Funder
Science Mission Directorate
Publisher
American Geophysical Union (AGU)