Affiliation:
1. Woods Hole Oceanographic Institution Woods Hole MA USA
2. Massachussetts Institute of Technology Cambridge MA USA
3. Princeton University Princeton NJ USA
4. University of Oxford Oxford UK
Abstract
AbstractQuantitative constraints on past mean ocean temperature (MOT) critically inform our historical understanding of Earth's energy balance. A recently developed MOT proxy based on paleoatmospheric Xe, Kr, and N2 ratios in ice core air bubbles is a promising tool rooted in the temperature dependences of gas solubilities. However, these inert gases are systematically undersaturated in the modern ocean interior, and it remains unclear how air‐sea disequilibrium may have changed in the past. Here, we carry out 30 tracer‐enabled model simulations under varying circulation, sea ice cover, and wind stress regimes to evaluate air‐sea disequilibrium in the Last Glacial Maximum (LGM) ocean. We find that undersaturation of all three gases was likely reduced, primarily due to strengthened high‐latitude winds, biasing reconstructed MOT by −0.38 ± 0.37°C (1σ). Accounting for air‐sea disequilibrium, paleoatmospheric inert gases indicate that LGM MOT was 2.27 ± 0.46°C (1σ) colder than the pre‐industrial era.
Funder
National Science Foundation
Natural Environment Research Council
Office of Polar Programs
Office of Nuclear Energy
National Center for Atmospheric Research
University of Oxford
Publisher
American Geophysical Union (AGU)