Dependence of Electron Flux Dropouts in the Earth's Outer Radiation Belt on Energy and Driving Parameters During Geomagnetic Storms

Author:

Hua Man1ORCID,Bortnik Jacob1ORCID,Ma Donglai1ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences UCLA Los Angeles CA USA

Abstract

AbstractUsing 5‐year of measurements from Van Allen Probes, we present a survey of the statistical dependence of the Earth's outer radiation belt electron flux dropouts during geomagnetic storms on electron energy and various driving parameters including interplanetary magnetic field Bz, PSW, SYM‐H, and AE. By systematically investigating the dropouts over energies of 1 keV–10 MeV at L‐shells spanning 4.0–6.5, we find that the dropouts are naturally divided into three regions. The dropouts show much higher occurrence rates at energies below ∼100 keV and above ∼1 MeV compared to much smaller occurrence rate at intermediate energies around hundreds of keV. The flux decays more dramatically at energies above ∼1 MeV compared to the energies below ∼100 keV. The flux dropouts of electrons below ∼100 keV strongly depend on magnetic local time (MLT), which demonstrate high occurrence rates on the nightside (18–06 MLT), with the highest occurrence rate associated with northward Bz, strong PSW and SYM‐H, and weak AE conditions. The strongest flux decay of these dropouts is found on the nightside, which strongly depends on PSW and SYM‐H. However, there is no clear MLT dependence of the occurrence rate of relativistic electron flux dropouts above ∼1 MeV, but the flux decay of these dropouts is more significant on the dayside, with stronger decay associated with southward IMF Bz, strong PSW, SYM‐H, and AE conditions. Our statistical results are crucial for understanding of the fundamental physical mechanisms that control the outer belt electron dynamics and developing future potential radiation belt forecasting capability.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3