Dipolarization Fronts in the Jovian Magnetotail: Statistical Survey of Ion Intensity Variations Using Juno Observations

Author:

Blöcker A.1ORCID,Kronberg E. A.1ORCID,Grigorenko E. E.2,Roussos E.3ORCID,Clark G.4ORCID

Affiliation:

1. Department of Earth and Environmental Sciences Ludwig Maximilian University of Munich Munich Germany

2. Space Research Institute Russian Academy of Sciences Moscow Russia

3. Max Planck Institute for Solar System Research Göttingen Germany

4. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

Abstract

AbstractEnergetic particle acceleration and energization in planetary magnetotails are often associated with dipolarization fronts characterized by a rapid increase of the meridional component of the magnetic field. Despite many studies of dipolarization events in Earth's magnetotail, Jupiter’s magnetotail provides an almost ideal environment to study high‐energetic ion acceleration by dipolarization fronts because of its large spatial scales and plasma composition of heavy and light ions. In this study, we focus on the response of different high‐energetic ion intensities (H, He, S, and O) to prominent magnetic dipolarization fronts inside the Jovian magnetotail. We investigate if ion energization and acceleration are present in the observations around the identified dipolarization fronts. Therefore, we present a statistical study of 87 dipolarization front signatures, which are identified in the magnetometer data of the Juno spacecraft from July 2016 to July 2021. For the ion intensity analysis, we use the energetic particle observations from the Jupiter Energetic Particle Detector Instrument. Our statistical study reveals that less than half of the identified events are accompanied by an increase of the ion intensities, while most of the other events show no significant change in the ion intensity dynamics. In about 40% of the events located in the dawn sector a significant decrease of the energy spectral index is detected indicating ion acceleration by the dipolarization fronts.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3