Relativistic Electron Precipitation Events Driven by Solar Wind Impact on the Earth's Magnetosphere

Author:

Roosnovo Alexandra1ORCID,Artemyev Anton V.2ORCID,Zhang Xiao‐Jia23ORCID,Angelopoulos Vassilis2ORCID,Ma Qianli45ORCID,Grimmich Niklas6ORCID,Plaschke Ferdinand6,Fischer David7ORCID,Werner Magnes7

Affiliation:

1. ISR Space Science and Applications Group Los Alamos National Laboratory Los Alamos NM USA

2. Department of Earth, Planetary, and Space Sciences University of California Los Angeles CA USA

3. Department of Physics University of Texas at Dallas Richardson TX USA

4. Department of Atmospheric and Oceanic Sciences University of California Los Angeles CA USA

5. Center for Space Physics Boston University Boston MA USA

6. Institut für Geophysik und Extraterrestrische Physik Technische Universität Braunschweig Braunschweig Germany

7. Space Research Institute Austrian Academy of Science Graz Austria

Abstract

AbstractCertain forms of solar wind transients contain significant enhancements of dynamic pressure and may effectively drive magnetosphere dynamics, including substorms and storms. An integral element of such driving is the generation of a wide range of electromagnetic waves within the inner magnetosphere, either by compressionally heated plasma or by substorm plasma sheet injections. Consequently, solar wind transient impacts are traditionally associated with energetic electron scattering and losses into the atmosphere by electromagnetic waves. In this study, we show the first direct measurements of two such transient‐driven precipitation events as measured by the low‐altitude Electron Losses and Fields Investigation CubeSats. The first event demonstrates storm‐time generated electromagnetic ion cyclotron waves efficiently precipitating sub‐relativistic and relativistic electrons from >300 keV to 2 MeV at the duskside. The second event demonstrates whistler‐mode waves leading to scattering of electrons from 50 to 700 keV on the dawnside. These observations confirm the importance of solar wind transients in driving energetic electron losses and subsequent dynamics in the ionosphere.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3