External and Internal Causes of the Stormtime Intensification of the Dawnside Westward Auroral Electrojet

Author:

Ohtani S.1ORCID,Sorathia K.1ORCID,Merkin V. G.1ORCID,Frey H. U.2ORCID,Gjerloev J. W.13ORCID

Affiliation:

1. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

2. Space Sciences Laboratory University of California Berkeley CA USA

3. Faculty for physics and Technology University of Bergen Bergen Norway

Abstract

AbstractThe dawn‐dusk asymmetry of magnetic depression is a characteristic feature of the storm main phase. Recently Ohtani (2021, https://doi.org/10.1029/2021JA029643) reported that its magnitude is correlated with the dawnside westward auroral electrojet (AEJ) intensity, and suggested that the dawnside AEJ intensification is a fundamental process of the stormtime magnetosphere‐ionosphere coupling. In this study we observationally address the cause of the dawnside AEJ intensification in terms of four scenarios. That is, the dawnside AEJ intensifies because (a) the external driving of global convection strengthens, (b) solar wind compression enhances energetic electron precipitation, and therefore, ionospheric conductance, through wave‐particle interaction, (c) the substorm current wedge forms in the dawn sector, and (d) energetic electrons injected by nightside substorms drift dawnward, and the subsequent precipitation enhances ionospheric conductance. We find an event that fits each scenario, and therefore, none of these scenarios can be precluded. However, the result of a superposed epoch analysis shows that some causes are more prevalent than others. More specifically, (a) although the enhancement of external driving may precondition the dawnside AEJ intensification, it is rarely the direct cause; (b) external compression probably explains only a small fraction of the events; (c) prior to the dawnside AEJ intensification, the westward AEJ tends to intensify in the midnight sector along with mid‐latitude positive bays, which suggests that the substorm injection of energetic electrons is the most prevalent cause. This last result may also be explained by the dawnside expansion of the substorm current wedge, which, however, is arguably far less common.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3