Particle Acceleration in Jupiter's Ion Radiation Belts by Nonlinear Wave Trapping

Author:

Sekine Tomohiro1,Omura Yoshiharu1ORCID,Summers Danny2ORCID,Hsieh Yi‐Kai1ORCID,Nakamura Satoko3ORCID

Affiliation:

1. Research Institute for Sustainable Humanosphere Kyoto University Kyoto Japan

2. Memorial University of Newfoundland St. John's NL Canada

3. Institute for Advanced Research Nagoya University Nagoya Aichi Japan

Abstract

AbstractWe present a physical mechanism for generating ∼GeV ions in the Jovian radiation belts. The mechanism is called relativistic turning acceleration (RTA) and involves a special form of nonlinear wave trapping by electromagnetic ion cyclotron (EMIC) waves. Necessary conditions for RTA include a near‐equatorial source of EMIC waves, strong wave amplitudes (of the order of a few percent of the background magnetic field strength), and a source of ions of sufficiently high energy. RTA occurs when a fraction of equator‐ward moving ions encounters pole‐ward moving waves, and, in so doing, becomes entrapped and undergoes a turning motion. The trapped ions then move poleward in the same direction as the waves and eventually become detrapped, but during the turning motion the ions undergo significant acceleration. We rigorously verify this process by providing the theory of nonlinear interactions between relativistic protons and coherent EMIC waves. The RTA process has been previously established for the analogous whistler mode wave‐electron interaction. We carry out particle simulations for protons at R = 2RJ (where RJ = Jovian radius) interacting with EMIC waves of amplitude Bw = 0.02B0eq (where B0eq = background magnetic field strength at the equator). We confirm that a large portion of test protons experience RTA and that some protons of critical energy 240 MeV can be accelerated to 10 GeV in a period of 5 s. The nonlinear acceleration process is crucially controlled by the trapping condition 0 < S < 1 where S is the inhomogeneity factor.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3