Location and Timing of Magnetic Reconnections in Earth's Magnetotail: Accomplishments of the 29‐Year Geotail Near‐Earth Magnetotail Survey

Author:

Nagai T.1ORCID,Shinohara I.2ORCID,Saito Y.2ORCID,Ieda A.3ORCID,Nakamura R.4ORCID

Affiliation:

1. Independent Research Tokyo Japan

2. Institute of Space and Astronautical Science JAXA Sagamihara Japan

3. Institute for Space‐Earth Environmental Research Nagoya University Nagoya Japan

4. Space Research Institute Austrian Academy of Sciences Graz Austria

Abstract

AbstractThe spacecraft Geotail surveyed the near‐Earth plasma sheet from XGSM = −10 to −31 RE and YGSM = −20 to +20 RE during the period from 1994 to 2022. It observed 243 magnetic reconnection events and 785 tailward flow events under various solar wind conditions during plasma sheet residence time of over 23,000 hr. Magnetic reconnections associated with the onset of magnetospheric substorms occur mostly in the range XGSM = −23 to −31 RE. When the solar wind is intense and high substorm activities continue, magnetic reconnection can occur closer to the Earth. The YGSM locations of magnetic reconnections depend on the solar wind conditions and on previous substorm activity. Under normal solar wind conditions, magnetic reconnection occurs preferentially in the pre‐midnight plasma sheet. Under conditions with intense (weak) solar wind energy input, however, magnetic reconnection can occur in the post‐midnight (duskside) plasma sheet. Continuous substorm activity tends to shift the magnetic reconnection site duskward. The plasma sheet thinning proceeds faster under intense solar wind conditions, and the loading process that provides the preconditions for magnetic reconnection becomes shorter. When magnetic flux piles up during a prolonged period with a strongly northward‐oriented interplanetary magnetic field (IMF) Bz, the time necessary to provide the preconditions for magnetic reconnection becomes longer. Although the solar wind conditions are the primary factors that control the location and timing of magnetic reconnections, the plasma sheet conditions created by preceding substorm activity or the strongly northward IMF Bz can modify the solar wind control.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma Sheet Magnetic Flux Transport During Geomagnetic Storms;Geophysical Research Letters;2024-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3