Mars Global Distribution of the External Magnetic Field and Its Variability: MAVEN Observation and MHD Prediction

Author:

Fang Xiaohua1ORCID,Ma Yingjuan2ORCID,Luhmann Janet3ORCID,Dong Yaxue1ORCID,Halekas Jasper4ORCID,Curry Shannon3ORCID

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

2. Department of Earth, Planetary and Space Sciences University of California Los Angeles CA USA

3. Space Sciences Laboratory University of California Berkeley CA USA

4. Department of Physics and Astronomy University of Iowa Iowa City IA USA

Abstract

AbstractWe study the average global distribution of the external magnetic field at Mars, and its variability with the upstream solar wind dynamic pressure and interplanetary magnetic field as well as with the ambient crustal magnetic field strength. Our approach involves excluding the intrinsic planetary field from the total magnetic field by applying a crustal field model previously derived using low altitude measurements. The distribution of the average external field that remains is statistically analyzed using nearly 8 years of Mars Atmosphere and Volatile EvolutioN (MAVEN) observations and several global, time‐dependent magnetohydrodynamic simulations. Overall consistent results have been obtained from the data and model, which are complementary to each other and cross validate the findings. It is found that the external field is significantly enhanced from the upstream across the bow shock (BS) and further intensifies closer to the planet in the topside ionosphere. It peaks at ∼170 km altitude near the subsolar point, significantly decreasing with increasing solar zenith angle. There is a strong day‐night asymmetry in the external field, with a typical dayside intensity of ∼15–50 nT and a nightside intensity of ∼5–15 nT. Under high solar wind dynamic pressures and IMFs, the external field may be enhanced by a factor of ∼2 everywhere below the BS, on both the dayside and nightside. In addition, our model results suggest that strong crustal fields, which effectively withstand the penetration of the solar wind, reduce the external field at low altitudes.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3