Daytime Medium Scale Traveling Ionospheric Disturbances (MSTIDS) Over the Andes Mountains at Equatorial and Low Magnetic Latitudes

Author:

Figueiredo C. A. O. B.1ORCID,Wrasse C. M.1ORCID,Vadas S.2ORCID,Takahashi H.1ORCID,Otsuka Y.3ORCID,Nyassor P. K.1,Shiokawa K.3ORCID,Paulino I.4ORCID,Barros D.1

Affiliation:

1. Space Weather Division National Institute for Space Research—INPE São Paulo Brazil

2. Northwest Research Associates Boulder CO USA

3. Institute for Space‐Earth Environmental Research Nagoya University Nagoya Japan

4. Unidade acadêmica de física Universidade Federal de Campina Grande Campina Grande Brazil

Abstract

AbstractWe analyze daytime quiet‐time MSTIDs between 2013 and 2015 at the geomagnetic equatorial and low latitude regions of the Chilean and Argentinian Andes using keograms of detrended total electron content (dTEC). The MSTIDs had a higher occurrence rate at geomagnetic equatorial latitudes in the June solstice (winter) and spring (SON). The propagation directions changed with the season: summer (DJF) [southeast, south, southwest, and west], winter (JJA) [north and northeast], and equinoxes [north, northeast, south, southwest, and west]. In addition, the MSTIDs at low latitudes observed between 8:00 and 12:00 UT occur more often during the December solstice and propagate northwestward and northeastward. After 12:00 UT, they are mostly observed in the equinoxes and June solstice. Their predominant propagation directions depend on the season: summer (all directions with a preference for northeastward), autumn (MAM) [north and northeast], winter (north and northeast), and spring (north, northeast, and southwest). The MSTID propagation direction at different latitudes was explained by the location of the possible sources. Besides, we calculated MSTIDs parameters at geomagnetic low latitudes over the Andes Mountains and compared them with those estimated at the geomagnetic equatorial latitudes. We found that the former is smaller on average than the latter. Also, our observations validate recent model results obtained during geomagnetically quiet‐time as well as daytime MSTIDs during winter over the south of South America. These results suggest that secondary or high‐order gravity waves (GWs) from orographic forcing are the most likely source of these MSTIDs.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Division of Atmospheric and Geospace Sciences

Earth Sciences Division

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Japan Society for the Promotion of Science

Ministério da Ciência, Tecnologia e Inovação

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3