Investigation on Chasing and Interaction of Traveling Ionospheric Disturbances Based on Multi‐Instrument

Author:

Luo Ji12ORCID,Xu Jiyao23ORCID,Wu Kun4ORCID,Sheng Zheng1ORCID

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

4. High Altitude Observatory NSF National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractIn this study, we use multi‐instrument observations (all‐sky imager (ASI), global navigation satellite system (GPS) receivers, digisonde) to study the interaction of nighttime medium‐scale traveling ionospheric disturbances (MSTIDs) on 13 November 2018. The most attractive aspect of this event is that the interaction appeared between two dark bands both propagated southwestward. The airglow observations show that the latter band moved faster and caught up with the former, and these two bands merged into a new one. The propagating characteristics and morphology of the MSTIDs changed during the interaction process. The simulations from the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) suggested that the ionospheric background zonal winds and electron density distributions could play essential roles in the interaction of the MSTIDs. Moreover, the merging process might be associated with the electrostatic reconnection.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3