On the Role of Kinetic Alfven Waves in the Magnetosheath Ion Thermalization Around the Night‐Side Magnetopause

Author:

Lukin A. S.123ORCID,Artemyev A. V.14ORCID,Zhang X.‐J.34ORCID,Vasko I. Y.15ORCID,Petrukovich A. A.1ORCID

Affiliation:

1. Space Research Institute RAS Moscow Russia

2. Faculty of Physics National Research University Higher School of Economics Moscow Russia

3. Department of Physics University of Texas at Dallas Richardson TX USA

4. Earth, Planetary, and Space Sciences University of California, Los Angeles Los Angeles CA USA

5. Space Sciences Laboratory University of California at Berkeley Berkeley CA USA

Abstract

AbstractThe solar wind ion transport across the magnetopause is one of the main sources of plasma for the Earth's magnetotail. Such a transport is supported by various dynamic processes at the flank magnetopause, where wave‐particle interactions play a crucial role in ion flow thermalization and diffusion across magnetic field surfaces of the magnetopause tangential discontinuity. In this paper we numerically model such ion thermalization by the most intense electromagnetic waves observed in the magnetosheath, kinetic Alfven waves. We aim to develop an approach for long‐term simulations of ion scattering by waves and ion dynamics around realistic magnetopause magnetic fields. This approach is based on a combination of test particle simulations and stochastic differential equations modeling ion diffusion in velocity space. We demonstrate that for realistic magnetopause configuration and wave characteristics, the magnetosheath ion flow can be substantially thermalized around the magnetopause. This result explains observations of ion energy conservation across the flank magnetopause: kinetic and thermal energies of flowing magnetosheath ions approximately equal to the thermal energy of stagnant magnetospheric ions.

Funder

Russian Science Foundation

Foundation for the Advancement of Theoretical Physics and Mathematics

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3