Affiliation:
1. British Antarctic Survey Natural Environment Research Council Cambridge UK
Abstract
AbstractWhistler mode chorus is an important magnetospheric wave emission playing a major role in radiation belt dynamics, where it contributes to both the acceleration and loss of relativistic electrons. In this study we compute bounce and drift averaged chorus diffusion coefficients for 3.0 < L* < 6.0, using the TS04 external magnetic field model, taking into account co‐located near‐equatorial measurements of the wave intensity and fpe/fce, by combining the Van Allen probes measurements with data from a multi‐satellite VLF wave database. The variation of chorus wave normal angle (WNA) with spatial location and fpe/fce is also taken into account. We find that chorus propagating at small WNAs has the dominant contribution to the diffusion rates in most MLT sectors. However, in the region 4 ≤ MLT < 11 high WNAs dominate at intermediate pitch angles. In the region 3 < L* < 4, the bounce and drift averaged pitch angle and energy diffusion rates during active conditions are primarily larger than those in our earlier models by up to a factor of 10 depending on energy and pitch angle. Further out, the results are similar. We find that the bounce and drift averaged energy and pitch angle diffusion rates can be significantly larger than the new model in regions of low , where the differences can be up to a factor of 10 depending on energy and pitch angle.
Funder
Natural Environment Research Council
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献