Fast Spacecraft Charging Mitigation With Plasma Contactors During High‐Power Electron Beam Emission in the GEO Environment

Author:

Xue Bixi1ORCID,Zhang Fang1ORCID,Zhao Qiang1ORCID,Hao Jianhong2ORCID,Fan Jieqing2,Cao Xiangchun2ORCID,Dong Zhiwei1

Affiliation:

1. Institute of Applied Physics and Computational Mathematics Beijing China

2. School of Electrical and Electronic Engineering Department North China Electric Power University Beijing China

Abstract

AbstractThe emission of artificial electron beams causes an active spacecraft charging effect that poses challenges for electron beam sounding experiments. Plasma contactors have been suggested as a potential solution to this issue based on theoretical and simulation studies, but the impact of these contactors on spacecraft potentials in complex space environments remains unexplored. This paper investigates the fast active charging effect of spacecraft under the action of plasma contactors in the geostationary Earth orbit environment by using a two‐dimensional Particle‐in‐Cell model. We analyze and compare the effects of the “ion emission” process of the plasma contactor and the “electron collection” process of the background plasma on the spacecraft potential at different beam and environment parameters, as well as the coupling effects when both processes occur simultaneously. Our findings indicate that the “ion emission” and “electron collection” processes are the primary factors in determining the spacecraft potential in relatively thin and dense plasma environments, respectively. When the two processes occur together, the contactor plasma cloud increases the “electron collection” return current by expanding the range of the positive potential area around the spacecraft, while the dense background plasma mediates and provides the return current to ensure that the plasma contactor can effectively suppress the active charging effect even after the ion sheath is present. These results suggest that a reasonable adjustment of the contactor parameters based on the relationship between the electron beam and the background environment can effectively extend the normal emission time of the electron beam.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3