Ionospheric Vertical Correlation Distance Calculation Based on COSMIC Electron Density Profile Data

Author:

Zhang Simin123ORCID,Wu Xiaocheng123ORCID,Hu Xiong123

Affiliation:

1. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Key Laboratory of Science and Technology on Environmental Space Situation Awareness Chinese Academy of Sciences Beijing China

Abstract

AbstractBackground error covariance is an important part of ionospheric assimilation and contains correlation information of the ionospheric background field and error information of the model background field, determines the influence degree of observations on models, and controls the vertical electron density distribution of assimilation results. For more accurate background error covariance determination along the ionosphere vertical direction, we used Constellation Observing System for Meteorology Ionosphere and Climate occultation electron density profile data for vertical correlation distance calculation considering IRI 2016 model errors. The vertical direction correlations are asymmetrical above and below the reference altitude, and with increasing altitude, the vertical correlation distance growth rate may decline or remain unchanged. There are correlation differences in different solar activity years, varying with local time, geomagnetic latitude, and altitude. The vertical correlation distances in high‐solar activity years are greater than that in low‐solar activity years. The correlation distances difference at different times decreases with latitude, with the largest correlation distances at low latitudes. The nighttime distances vary slightly with latitude, while the sunrise correlation distances vary the most relative to other periods. At the same altitude, the correlation distances in the daytime low‐latitude region are the smallest overall, while the correlation distances between the daytime mid‐latitude region and sunrise time are the largest. The point where vertical correlation distances growth stabilize may be correlated with ionospheric hmF2 and upper transition. The IRI model is the most widely used background model in ionospheric assimilation, and the study results could facilitate more accurate vertical background error covariance for ionospheric assimilation.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3