Investigating the Main Features of the Correlation Between Electron Density and Temperature in the Topside Ionosphere Through Swarm Satellites Data

Author:

Pignalberi A.1ORCID,Giannattasio F.1ORCID,Truhlik V.2ORCID,Coco I.1ORCID,Pezzopane M.1ORCID,Alberti T.1ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia Roma Italy

2. Institute of Atmospheric Physics of the Czech Academy of Sciences Prague Czech Republic

Abstract

AbstractElectron density (Ne) and electron temperature (Te) observations collected by Langmuir Probes on board the European Space Agency (ESA) Swarm B satellite are used to characterize their correlation in the topside ionosphere at an altitude of about 500 km. Spearman correlation coefficient values (RSpearman) are calculated on joint probability distributions between Ne and Te for selected conditions. The large data set of Swarm B observations at 2‐Hz rate, covering the years 2014–2022, allowed investigating the correlation properties of the topside ionospheric plasma on a global scale, for different diurnal and seasonal conditions, with both a coverage and a detail never reached before. Results are given as maps of RSpearman as a function of the Quasi‐Dipole (QD) magnetic latitude and magnetic local time (MLT) coordinates. The characterization of the correlation at high latitudes, along with the description of the diurnal trend at all latitudes, are the new findings of this study. The main correlation features point out a negative correlation at the morning overshoot, during daytime at mid latitudes, and during nighttime at the ionospheric trough and subauroral latitudes. Conversely, a positive correlation dominates the nighttime hours at mid and low latitudes and, to a minor extent, the low latitudes from 09 MLT onwards. A seasonal dependence of the correlation is noticeable only at very high latitudes where the general pattern of the negative correlation does not hold around ±75° QD latitude in the summer season. Results from Swarm B have been statistically compared and discussed with observations from the Arecibo, Jicamarca, and Millstone Hill incoherent scatter radars.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3