Affiliation:
1. The Johns Hopkins University Applied Physics Laboratory Laurel MD USA
2. Department of Mathematics and Statistics University of St Andrews St Andrews UK
3. Shandong Key Laboratory of Optical Astronomy and Solar‐Terrestrial Environment, School of Space Science and Physics Institute of Space Sciences Shandong University Weihai People's Republic of China
Abstract
AbstractMany previous studies have reported that magnetospheric ultralow frequency waves excited by interplanetary shocks exhibit a strong toroidal component, corresponding to azimuthal displacement of magnetic field lines. However, the toroidal oscillations excited by an interplanetary shock on 27 February 2014 and observed on the dayside by multiple spacecraft were accompanied by a strong poloidal component (radial field line displacement). The frequency of the toroidal oscillations changed with the radial distance of the spacecraft as expected for standing Alfvén waves. We run a 3D linear numerical simulation of this wave event using a model magnetosphere with a realistic radial variation of the Alfvén velocity. The simulated wave fields, when sampled at a radial distance comparable to those of the observations in the real magnetosphere, exhibit polarization similar to the observations. In the simulation, the poloidal component comes from radially standing fast mode waves and the toroidal component results from a field line resonance driven by the fast mode waves. As a consequence, the relative amplitude and phase of the toroidal and poloidal components change with radial distance.
Funder
National Aeronautics and Space Administration
Science and Technology Facilities Council
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献