Climatology of the Harmonic Frequency Separation of Ionospheric Alfvén Resonances at Eskdalemuir Observatory, UK

Author:

Hodnett R. M.1ORCID,Yeoman T. K.1ORCID,Beggan C. D.2ORCID,Wright D. M.1

Affiliation:

1. School of Physics and Astronomy University of Leicester Leicester UK

2. British Geological Survey Edinburgh UK

Abstract

AbstractWe extracted the harmonic frequency separation (Δf) of Ionospheric Alfvén Resonances (IAR) observed in the Eskdalemuir induction coil magnetometer data for the 9 year data set of 2013–2021. To obtain Δf values, we used a machine learning technique that identifies the harmonics and from this we calculated the average separation. To investigate the climatology of the IAR, we have modeled the Δf of the IAR for the data set using a time of flight calculation with model Alfvén velocity profiles. When analyzing Δf from the model and data, we found that in general they follow the same trends. The modeled Δf and Δf from the data both show an inverse correlation with foF2, which confirms that the frequencies of the IAR are controlled by electron density. It follows that Δf is greater around midnight and during the winter months, due to the decrease in plasma mass density. Variability is also reflected when comparing yearly trends in Δf with the sunspot number; higher frequencies are observed and modeled at low sunspot number. It is difficult to examine trends with instantaneous geomagnetic activity as IAR are not visible in spectrograms when geomagnetic activity is high. We find cases where the difference in measured and modeled Δf is significant, suggesting that the model does not capture short term variations in plasma mass density that influence the IAR during these days. We plan to undertake further modeling of Δf on shorter timescales.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3