Direct Observation of Low‐Energy Electron Precipitation in the Subauroral Region

Author:

Zhou Su1ORCID,Luan Xiaoli2ORCID,Han Desheng3ORCID,Teng Shangchun3ORCID

Affiliation:

1. School of Electronic and Communication Engineering Guiyang University Guiyang China

2. CAS Key Laboratory of Geospace Environment School of Earth and Space Sciences University of Science and Technology of China Hefei China

3. State Key Laboratory of Marine Geology School of Ocean and Earth Science Tongji University Shanghai China

Abstract

AbstractThis study used data collected by the Defense Meteorological Satellite Program (DMSP) and the Radiation Belt Storm Probes (RBSP) to identify a unique subauroral arc in the duskside, which is associated with precipitations of both ions and electrons. The auroral arc was found to be separated from the auroral oval, extending from 14 to 19 magnetic local time hours. Subauroral arcs are usually generated by energetic protons with energies above approximately 10 keV, while enhanced fluxes of low‐energy (<200 eV) electrons were revealed to occur and last for a few hours in this arc region from in situ observations by the DMSP satellite. The observations from RBSP‐B indicate that the low‐energy electron fluxes, with pitch angles near the loss cone, were accompanied by intensified electromagnetic ion cyclotron (EMIC) waves. It is suggested that the enhanced fluxes of cold electrons were heated by the Landau damping of the observed H+ band EMIC waves, which was in the frequency range below the local H+ gyrofrequency and above the local He+ gyrofrequency. Additionally, both electron density and temperature in the ionosphere increased significantly. This study, using conjugate observations of magnetospheric and ionospheric spacecraft, providing evidence of precipitation of low‐energy electrons within the subauroral arc region, thereby offering new insight into understanding the ionospheric effects of cold electron heating by EMIC waves.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3