Modeling of Multi‐Ion Plasma Bubbles in the Equatorial Ionosphere

Author:

Jiang Chunhua1ORCID,Wei Lehui1ORCID,Yokoyama Tatsuhiro2ORCID,Tian Rong1ORCID,Liu Tongxin1ORCID,Yang Guobin1ORCID

Affiliation:

1. Department of Space Physics, School of Electronic Information Wuhan University Wuhan China

2. Research Institute for Sustainable Humanosphere Kyoto University Uji Japan

Abstract

AbstractEquatorial plasma bubbles (spread F/ionospheric irregularities) are plasma density irregularities or depletion in the ionosphere. It can be observed by radio waves, optical and in situ instruments during postsunset in equatorial and low‐latitude regions. Severe scintillations in radio waves can be caused by the presence of plasma bubbles. Therefore, studies of plasma bubbles become one of the most important and hot topics. Many studies have been devoted to the physical mechanism and characteristics of plasma bubbles in the ionosphere. However, some critical issues (e.g., day‐to‐day variability, complex structures, and ions composition) are still not well known. In this study, a new two‐dimensional model of multi‐ion (H+, He+, N+, O+, N2+, NO+, and O2+) plasma bubbles was developed. The photoionization, chemical reaction, and recombination processes of multiple ions have been added to the new model. The present model was used to simulate the nonlinear evolutions of multiple plasma bubbles in the equatorial region. Results show that the merging, disconnection and connection processes of plasma bubbles can be reproduced in this simulation. In addition, simulations first present morphological structures of molecular ions (NO+, O2+) of multiple plasma bubbles, which are significantly different from plasma bubbles. Molecular ion NO+ is manifested as plasma blobs. However, molecular ion O2+ is manifested as bubbles at low altitudes but blobs at high altitudes. The complex structures of multiple plasma bubbles and morphological structures of molecular ions in the present simulation are mostly consistent with observations.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3