Plasma Sheet Counterparts for Auroral Beads and Vortices in Advance of Fast Flows: New Evidence for Near‐Earth Substorm Onset

Author:

Babu S. S.1ORCID,Mann I. R.12ORCID,Donovan E. F.3ORCID,Smith A. W.2ORCID,Dimitrakoudis S.14ORCID,Sydora R. D.1ORCID,Kale A.1ORCID

Affiliation:

1. Department of Physics University of Alberta Edmonton AB Canada

2. Department of Mathematics, Physics and Electrical Engineering Northumbria University Newcastle UK

3. Department of Physics and Astronomy University of Calgary Calgary AB Canada

4. Department of Physics National and Kapodistrian University of Athens Athens Greece

Abstract

AbstractThe relationship between auroral, ground, and plasma sheet signatures in the late growth phase is crucial for understanding the sequence of events during a substorm expansion phase onset. Here we show conjugate ground‐auroral‐satellite observations of a substorm that occurred on 18 September 2021, between 04:45 and 05:00 UT, where four auroral activations were detected in the all‐sky imagers. An initial activation showed the brightening of an equatorward arc within the cutoff of the 630 nm emissions, indicating activity on closed field lines well inside the open‐closed field line boundary (OCFLB). During a second activation, auroral beads were observed on a brightening arc, equatorward and within the OCFLB, followed by the transformation from small‐scale to large‐scale vortices. The tail current sheet was highly disturbed during the auroral vortex evolution, including pressure and magnetic disturbances, an apparent broadening of a previously thin current sheet, and a breakdown of the frozen‐in condition. Our observations clearly show late growth phase dynamics, including arc brightenings, the formation of auroral beads, and auroral vortex development, can occur well in advance of fast Earthward flows in the tail. Indeed, it is only during that later activity that auroral breakup and strong Earthward flows, which we associate with magnetic reconnection further down the tail, are observed together with strong magnetic bays on the ground. The sequence of events is consistent with an inside‐to‐outside model at substorm expansion phase onset, most likely via a shear‐flow ballooning instability in the transition region from dipole to tail‐like fields in the near‐Earth plasma sheet.

Funder

Natural Sciences and Engineering Research Council of Canada

Royal Society

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3