Enabling Boomless CubeSat Magnetic Field Measurements With the Quad‐Mag Magnetometer and an Improved Underdetermined Blind Source Separation Algorithm

Author:

Hoffmann Alex Paul1ORCID,Moldwin Mark B.1ORCID,Strabel Brady P.1,Ojeda Lauro V.2ORCID

Affiliation:

1. Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

2. Mechanical Engineering University of Michigan Ann Arbor MI USA

Abstract

AbstractIn situ magnetic field measurements are often difficult to obtain due to the presence of stray magnetic fields generated by spacecraft electrical subsystems. The conventional solution is to implement strict magnetic cleanliness requirements and place magnetometers on a deployable boom. However, this method is not always feasible on low‐cost platforms due to factors such as increased design complexity, increased cost, and volume limitations. To overcome these problems, we propose using the Quad‐Mag CubeSat magnetometer with an improved Underdetermined Blind Source Separation (UBSS) noise removal algorithm. The Quad‐Mag consists of four magnetometer sensors in a single CubeSat form‐factor card that allows distributed measurements of stray magnetic fields. The UBSS algorithm can remove stray magnetic fields without prior knowledge of the magnitude, orientation, or number of noise sources. UBSS is a two‐stage algorithm that identifies signals through cluster analysis and separates them through compressive sensing. We use UBSS with single‐source point detection to improve the identification of noise signals and iteratively‐weighted compressed sensing to separate noise signals from the ambient magnetic field. Using a mock CubeSat, we demonstrate in the lab that UBSS reduces four noise signals producing more than 100 nT of noise at each magnetometer to below the expected instrument resolution (5 nT at 65 Hz). Additionally, we show that the integrated Quad‐Mag and improved UBSS system works well for 1U, 2U, 3U, and 6U CubeSats in simulation. Our results show that the Quad‐Mag and UBSS noise cancellation package enables high‐fidelity magnetic field measurements from a CubeSat without a boom.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3