Identification of Penetration and Disturbance Dynamo Electric Fields and Their Effects on the Generation of Equatorial Plasma Bubbles

Author:

Huang Chao‐Song1ORCID

Affiliation:

1. Air Force Research Laboratory Space Vehicles Directorate Kirtland AFB Albuquerque NM USA

Abstract

AbstractA very challenging task in ionospheric studies is to determine the separate contributions of penetration and disturbance dynamo processes in the generation of equatorial plasma drift during magnetic storms. In this study, we analyze the ion drift measured by the Communications/Navigation Outage Forecasting System satellite during the magnetic storm on 15–16 July 2012. A unique feature of this storm is the exceptionally long period of continuous southward interplanetary magnetic field (IMF) for 32 hr. The storm‐induced net change of the meridional/vertical ion drift, the difference drift between the storm time and the quiet time, is derived during the storm main phase and the first 20 hr of the recovery phase with southward IMF. The difference drift during the recovery phase cannot be explained by the disturbance dynamo effect alone. A new method is used to separate the drifts caused by the penetration and disturbance dynamo processes. The penetration drift is represented by an empirical pattern of penetration electric field and depends on the IMF magnitude, and the disturbance dynamo drift is obtained by subtracting the penetration drift from the measured difference drift. The derived disturbance dynamo drift is in good agreement with previous statistical pattern. This is the first effort to identify the separate contributions of the penetration and disturbance dynamo processes to the total drift from observed data. The results have important implications in identifying storm‐time penetration and disturbance dynamo electric fields and their effects on the generation and evolution of plasma bubbles.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3