Energetic Electron Flux Dropouts Measured by ELFIN in the Ionospheric Projection of the Plasma Sheet

Author:

Shen Yangyang1ORCID,Artemyev Anton V.12ORCID,Runov Andrei1ORCID,Angelopoulos Vassilis1ORCID,Liu Jiang13ORCID,Zhang Xiao‐Jia14ORCID,Weygand James M.1ORCID,Wu Jiashu1,Tsai Ethan1ORCID,Wilkins Colin1ORCID

Affiliation:

1. Department of Earth, Planetary, and Space Sciences University of California, Los Angeles Los Angeles CA USA

2. Space Research Institute of Russian Academy of Sciences Russia Moscow

3. Department of Atmospheric and Oceanic Sciences University of California, Los Angeles Los Angeles CA USA

4. Department of Physics University of Texas at Dallas Richardson TX USA

Abstract

AbstractLow‐altitude observations of magnetospheric particles provide a unique opportunity for remote probing of the magnetospheric and plasma states during active times. We present the first statistical analysis of a specific pattern in such observations, energetic electron flux dropouts in the low‐altitude projection of the plasma sheet. Using 3.5 years of data from the ELFIN CubeSats we report the occurrence distribution of 145 energetic electron flux dropout events and identify characteristics, including their prevalence in the dusk and premidnight sectors, their association with substorms and enhanced auroral activities, and their correlation with the region‐1 (R1) field‐aligned current region. We also investigate three representative dropout events which benefit from satellite conjunctions between ELFIN, GOES, and THEMIS, to better understand the magnetospheric drivers and magnetic field conditions that lead to such dropouts as viewed by ELFIN. One class of dropouts may be associated with magnetic field mapping distortions due to local enhancements and thinning of cross‐tail current sheets and amplification of R1 field‐aligned currents. The other class may be associated with the increase in perpendicular anisotropy of magnetospheric electrons due to magnetic field dipolarizations near premidnight. These plasma sheet flux dropouts at ELFIN provide a valuable tool for refining magnetospheric models, thereby improving the accuracy of field‐line mapping during substorms.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3