A New Model of Electron Pitch Angle Distributions and Loss Timescales in the Earth's Radiation Belts

Author:

Glauert S. A.1ORCID,Atkinson J. W.12ORCID,Ross J. P.1ORCID,Horne R. B.1ORCID

Affiliation:

1. British Antarctic Survey Cambridge UK

2. University of Cambridge Cambridge UK

Abstract

AbstractAs the number of satellites on orbit grows it is increasingly important to understand their operating environment. Physics‐based models can simulate the behavior of the Earth's radiation belts by solving a Fokker‐Planck equation. Three‐dimensional models use diffusion coefficients to represent the interactions between electromagnetic waves and the electrons. One‐dimensional radial diffusion models neglect the effects of energy diffusion and represent the losses due to the waves with a loss timescale. Both approaches may use pitch angle distributions (PADs) to create boundary conditions, to map observations from low to high equatorial pitch angles and to calculate phase‐space density from observations. We present a comprehensive set of consistent PADs and loss timescales for 2 ≤ L* ≤ 7, 100 keV ≤ E ≤ 5 MeV and all levels of geomagnetic activity determined by the Kp index. These are calculated from drift‐averaged diffusion coefficients that represent all the VLF waves that typically interact with radiation belt electrons and show good agreement with data. The contribution of individual waves is demonstrated; magnetosonic waves have little effect on loss timescales when lightning‐generated whistlers are present, and chorus waves contribute to loss even in low levels of geomagnetic activity. The PADs vary in shape depending on the dominant waves. When chorus is dominant the distributions have little activity dependence, unlike the corresponding loss timescales. Distributions peaked near 90° are formed by plasmaspheric hiss for L* ≤ 3 and E < 1 MeV, and by EMIC waves for L* > 3 and E > 1 MeV. When hiss dominates, increasing activity broadens the distribution but when EMIC waves dominate increasing activity narrows the distribution.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3