Responses of Mesosphere Temperature to the Geomagnetic Storms on 8 and 15 September 2003

Author:

Sun Meng1ORCID,Lu Jianyong1ORCID,Li Jingyuan1ORCID,Tang Fen2,Wei Guanchun1,Li Zheng1,Yue Fulu3,Xiong Shiping1,Huang Ningtao1

Affiliation:

1. Institute of Space Weather School of Atmospheric Physics Nanjing University of Information Science & Technology Nanjing China

2. College of Information and Communication National University of Defense Technology Wuhan China

3. State Key Laboratory of Astronautic Dynamics Xi'an China

Abstract

AbstractThe impact of geomagnetic storms on the mesosphere temperature has been controversial and lacks direct observational evidence. The intricate chemical and physical processes in the mesosphere, combined with the scarcity of observations, pose challenges to achieving a thorough comprehension of storm‐induced turbulences in this region. Currently, some investigations have characterized temperature responses during geomagnetic storms and the focus has largely been on changes above mesopause (∼90 km). In this work, the responses of temperature in the mesosphere (75–95 km) to the storms on September 8 and 15, 2003 and its causes are studied using observations from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. It is found that (a) temperature responses for the moderate storm on September 15 manifest as increases within the latitude range of 80°S to 65°S, with peak values decreasing from approximately 15 K to around 7 K as latitude decreases, while for the minor strom of September 8 temperature changes only occur at ∼80°S with peaks of 7 K and −10 K, (b) the temperature responses can be transmitted down to 76–81 km, depending on the latitude and storm magnitude, and (c) there are significant fluctuations in both ozone (exceed 45%) and atomic oxygen (exceed 90%) after storm onset, highly correlated with temperature temporal and spatial variations. We suggest that the increases in ozone caused by the increases in atomic oxygen concentrations are the major contributor to rising temperature.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3