Retrieval of Thermospheric O and N2 Densities From ICON EUV

Author:

Tuminello Richard M.1ORCID,Stephan Andrew W.2ORCID,England Scott L.1ORCID

Affiliation:

1. Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg VA USA

2. US Naval Research Laboratory Washington DC USA

Abstract

AbstractAs activity in Earth orbit continues to grow, it is important to characterize the environment of near‐Earth space. One means of remotely sensing lower thermospheric neutrals is by measurement of O and N2 density through the observation of far‐ultraviolet (FUV) airglow of atomic oxygen at 135.6 nm and the N2 Lyman‐Birge‐Hopfield (LBH) bands (~130–180 nm), as has been done on the Ionospheric Connection Explorer (ICON), Global‐scale Observations of the Limb and Disk (GOLD), and Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) missions. This technique is not without limitations, however, as the FUV measurements suffer from contamination by ionospheric emissions at low latitudes and auroral emissions excited by precipitating energetic electrons and protons at high latitudes. Previous work has shown the potential for making measurements of O and N2 density in the lower‐middle thermosphere using observations of extreme‐ultraviolet (EUV) airglow. This measurement approach has a potential advantage in that it does not have an inherent ionospheric emission that must be accounted for. Additionally, these emissions are primarily excited directly by solar UV rather than electron impact and thus have the potential to enable expansion of neutral density observations into the auroral zone and polar cap where the FUV measurement cannot be applied. This article demonstrates a new approach and algorithm designed to retrieve thermospheric O and N2 density from 150 to 400 km using measurements from the ICON EUV instrument. The retrieval results throughout 2020 are summarized and compared to measurements from ICON FUV, GOLD, and SWARM.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3