Time Lags Between Ionospheric Scintillation Detection at Northern Auroral Latitudes and Onset of Geomagnetic Storms

Author:

Yang Zhe1ORCID,Morton Y. T. Jade2ORCID,Liu Yunxiang2

Affiliation:

1. College of Surveying and Geo‐informatics Tongji University Shanghai China

2. Smead Aerospace Engineering Sciences Department University of Colorado Boulder Boulder CO USA

Abstract

AbstractIonospheric responses to geomagnetic storms can cause irregular plasma structures and scintillation of Global Navigation Satellite System (GNSS) signals. In this paper, we investigate time lags between the detection of GNSS signal scintillation at northern hemisphere auroral latitudes and the onset of 15 geomagnetic storms that occurred in 2015–2017. The results show that the time lags between the detection of ground‐based GNSS scintillations and the observed sudden change in solar wind parameters are between tens of minutes and 15 hr. This time lag consists of two segments. The first segment is about 30–80 min, which is the lag between observed disturbances in the geomagnetic field and solar wind disturbances detected by orbiting spacecrafts around the L1 point. The second segment is between the observed GNSS signal scintillation and the storm sudden commencement (SSC). This second lag segment varies in the range of about 10–830 min and highly depends on the storm onset time and geomagnetic locations of GNSS signal propagation paths. Longer time lags over 450 min were observed with the signal ionospheric piercing point at 60–70° geomagnetic latitudes (MLAT) on the dayside, while shorter lags of 10∼450 min were observed with the signal IPPs at 68–81° MLAT and on the nightside at the time of SSC. The lag time variations can be explained by ionospheric irregularity production and transport processes associated with a variety of auroral and polar cap phenomena in response to solar wind coupling to the magnetosphere and ionosphere.

Funder

Defense Advanced Research Projects Agency

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3