Slow Electron Holes in the Earth's Magnetosheath

Author:

Shaikh Z. I.1ORCID,Vasko I. Y.2ORCID,Hutchinson I. H.3ORCID,Kamaletdinov S. R.4ORCID,Holmes J. C.5,Newman D. L.67,Mozer F. S.1ORCID

Affiliation:

1. Space Sciences Laboratory University of California at Berkeley Berkeley CA USA

2. William B. Hanson Center for Space Sciences University of Texas at Dallas Richardson TX USA

3. Massachusetts Institute of Technology Cambridge MA USA

4. University of California Los Angeles CA USA

5. Los Alamos National Laboratory Los Alamos NM USA

6. Center for Integrated Plasma Studies University of Colorado Boulder CO USA

7. Laboratory for Atmospheric and Space Physics Boulder CO USA

Abstract

AbstractWe present a statistical analysis of electrostatic solitary waves observed aboard Magnetospheric Multiscale spacecraft in the Earth's magnetosheath. Applying single‐spacecraft interferometry to several hundred solitary waves collected in about 2‐minute interval, we show that almost all of them have the electrostatic potential of positive polarity and propagate quasi‐parallel to the local magnetic field with plasma frame velocities of the order of 100 km/s. The solitary waves have typical parallel half‐widths from 10 to 100 m that is between 1 and 10 Debye lengths and typical amplitudes of the electrostatic potential from 10 to 200 mV that is between 0.01% and 1% of local electron temperature. The solitary waves are associated with quasi‐Maxwellian ion velocity distribution functions, and their plasma frame velocities are comparable with ion thermal speed and well below electron thermal speed. We argue that the solitary waves of positive polarity are slow electron holes and estimate the time scale of their acceleration, which occurs due to interaction with ions, to be of the order of one second. The observation of slow electron holes indicates that their lifetime was shorter than the acceleration time scale. We argue that multi‐spacecraft interferometry applied previously to these solitary waves is not applicable because of their too‐short spatial scales. The source of the slow electron holes and the role in electron‐ion energy exchange remain to be established.

Funder

Goddard Space Flight Center

National Science Foundation

Los Alamos National Laboratory

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3