Global Ionosphere Modeling Based on GNSS, Satellite Altimetry, Radio Occultation, and DORIS Data Considering Ionospheric Variation

Author:

Chen Jun12ORCID,Ren Xiaodong2ORCID,Yang Pengxin2,Xu Guozhen2,Huang Liangke3ORCID,Xiong Si4,Zhang Xiaohong25ORCID

Affiliation:

1. Department of Surveying and Mapping Engineering Minjiang University Fuzhou China

2. School of Geodesy and Geomatics Wuhan University Wuhan China

3. College of Geomatic and Geoinformatics Guilin University of Technology Guilin China

4. School of Resources and Environmental Science and Engineering Hubei University of Science and Technology Xianning China

5. Chinese Antarctic Center of Surveying and Mapping Wuhan University Wuhan China

Abstract

AbstractThe accuracy of ionospheric models estimated by ground‐based multiple global navigation satellite system ionospheric data over regions with sparse tracking stations is not ideal. To improve the accuracy of the estimated ionospheric model, different types of ionospheric data with different combinations were employed for previous studies. However, the ionospheric observational ranges for different types of ionospheric data are not the same. In this study, the accuracy of ionospheric maps generated by ground‐based ionospheric data (ground‐based strategy) and ground‐based ionospheric data combined with data provided by other geodetic measurements normalized by the single‐layer normalization method (multi‐source strategy) were studied. The results showed that the main differences between the ionospheric models estimated by the two strategies occur for data taken over the ocean, which mainly range from −1 to 0 total electron content unit (TECU). When assessed using Jason‐3 vertical total electron content data, the mean root mean square (RMS) value of the ionospheric model estimated by the multi‐source strategy was 5.03 TECU, which is approximately 15% smaller than that estimated by the ground‐based strategy. The maximum reduction in results using the multisource strategy was approximately 25% over different latitudes compared with that of the ground‐based strategy. Furthermore, the self‐consistency evaluation method was employed for evaluation. The results showed that the RMS of the ionospheric model estimated by the multi‐source strategy was 2.41 TECU, which is 3.60% better than that of the ground‐based strategy. The maximum reduction was 15% on different days.

Funder

Natural Science Foundation of Fujian Province

Minjiang University

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3