Localized Plasma Density Peak at Middle Latitudes During the April 2023 Geomagnetic Storm

Author:

Yang Yuyan123ORCID,Liu Libo123ORCID,Li Wenbo13ORCID,Chen Yiding124ORCID,Le Huijun123ORCID,Zhang Ruilong123ORCID,Zhao Xiukuan13

Affiliation:

1. Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Heilongjiang Mohe National Observatory of Geophysics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

4. Beijing National Observatory of Space Environment Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

Abstract

AbstractThis paper conducts a multi‐instrument analysis of a latitudinal plasma density peak at the middle latitudes during the early recovery phase of the April 2023 geomagnetic storm. The total electron content (TEC), peak density of the F layer, and the in situ plasma density from Swarm and Defense Meteorological Satellite Program (DMSP) satellites all capture this peak feature. This narrow latitudinal peak structure appeared around 50°N and extended from 40°E to 150°E in longitude with a prolonged duration of about 8 hr from sunset to midnight. This mid‐latitude peak reveals a noticeable equatorward motion and a slight westward shift. According to the plasma composition observations from DMSP satellites, this peak structure shows an O+ ions dominance, which means that this peak is more likely to be formed by an internal rather than an external source from the plasmasphere. Meanwhile, the middle latitude Fabry–Perot interferometer (FPI) observed strong equatorward thermospheric winds, and the peak height of the F layer presented a visible elevation, which suggests that the equatorward wind lifting caused the plasma density enhancement. Besides, the O/N2 ratio significantly decreased at lower and middle latitudes, and ion drift observations showed a distinct subauroral westward channel. Based on these simultaneous measurements, this structure's sharp equatorward and poleward boundaries might be related to the O/N2 ratio change and the subauroral polarization stream (SAPS) flow separately.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3