Characteristics of Boomerang Whistler‐Mode Waves Emitted From the DSX Spacecraft

Author:

Starks M. J.1ORCID,Lauben D. S.2,Albert J. M.1ORCID,Farrell W. M.3ORCID,Galkin I. A.4ORCID,Ginet G. P.5ORCID,Inan U. S.26,Johnston W. R.1ORCID,Linscott I. R.2ORCID,Sanchez J. C.7ORCID,Song P.4ORCID,Tu J.4ORCID

Affiliation:

1. Air Force Research Laboratory Kirtland Air Force Base NM USA

2. Stanford University Palo Alto CA USA

3. NASA/Goddard Space Flight Center Greenbelt MD USA

4. University of Massachusetts Lowell MA USA

5. MIT Lincoln Laboratory Bedford MA USA

6. Koç University Istanbul Turkey

7. Space Systems Command Kirtland Air Force Base NM USA

Abstract

AbstractThe Air Force Research Laboratory's Demonstration and Science Experiments (DSX) spacecraft carried a high‐voltage very low frequency transmitter and a sensitive broadband receiver to medium Earth orbit in 2019. During many pulsed transmission experiments, DSX detected apparent “boomerang” echoes when its emitted waves refracted in the magnetosphere and returned to the spacecraft. We simulated a series of these detected pulses using cold plasma ray tracing to characterize their likely wavelengths, indices of refraction, and initial wave normal angles. The waves were shown to remain relatively local to DSX, to be lightly damped, and to have a wide variety of wavelengths and indices of refraction, but they were all emitted with very oblique wave normal angles tightly clustered about half a degree from the Gendrin angle, which theoretical antenna models predict is preferentially excited. Our results are remarkably consistent with this prediction but are statistically biased closer to the resonance cone, possibly because of limitations in the ray tracing technique. The result is robust to perturbations of the simulation and confirms a very narrow beam of oblique radiation quite unlike the behavior of a dipole in vacuo.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The DSX Mission – Preliminary Results and Analysis;2023 International Conference on Electromagnetics in Advanced Applications (ICEAA);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3