Differentiating EDRs From the Background Magnetopause Current Sheet: A Statistical Study

Author:

Beedle J. M. H.12ORCID,Gershman D. J.2ORCID,Uritsky V. M.12,Phan T. D.3,Giles B. L.2ORCID

Affiliation:

1. Department of Physics The Catholic University of America Washington DC USA

2. NASA Goddard Space Flight Center Greenbelt MD USA

3. Space Sciences Laboratory University of California Berkeley CA USA

Abstract

AbstractThe solar wind is a continuous outflow of charged particles from the Sun's atmosphere into the solar system. At Earth, the solar wind's outward pressure is balanced by the Earth's magnetic field in a boundary layer known as the magnetopause. Plasma density and temperature differences across the boundary layer generate the Chapman‐Ferraro current which supports the magnetopause. Along the dayside magnetopause, magnetic reconnection can occur in electron diffusion regions (EDRs) embedded into the larger ion diffusion regions (IDRs). These diffusion regions form when opposing magnetic field lines in the solar wind and Earth's magnetic field merge, releasing magnetic energy into the surrounding plasma. While previous studies have given us a general understanding of the structure of the diffusion regions, we still do not have a good grasp of how they are statistically differentiated from the non‐diffusion region magnetopause. By investigating 251 magnetopause crossings from NASA's Magnetospheric Multiscale (MMS) Mission, we demonstrate that EDR magnetopause crossings show current densities an order of magnitude higher than regular magnetopause crossings—crossings that either passed through the reconnection exhausts or through the non‐reconnecting magnetopause, providing a baseline for the magnetopause current sheet under a wide range of driving conditions. Significant current signatures parallel to the local magnetic field in EDR crossings are also identified, which is in contrast to the dominantly perpendicular current found in the regular magnetopause. Additionally, we show that the ion velocity along the magnetopause is highly correlated with a crossing's location, indicating the presence of magnetosheath flows inside the magnetopause.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3