Affiliation:
1. Department of Space Physics School of Electronic Information Wuhan University Wuhan China
2. GFZ, German Research Centre for Geosciences Potsdam Germany
Abstract
AbstractUsing Challenging Minisatellite Payload and the Republic of China Satellite‐1 observations, the response of ionospheric radial current (IRC) in the F region to the enhancement of merging electric field (Em) at different magnetic local times (MLT) is investigated. Possible physical mechanisms are discussed in terms of neutral wind, conductivity, and prompt penetration electric field (PPEF). The disturbance IRC (ΔIRC) increases in the upward (downward) direction in the daytime (nighttime) within 3 hr after Em enhancement. However, disturbance zonal winds increase westward (eastward) at 12–18 MLT (00–06 MLT). The reduced F region electron density may help weaken IRC at 06–12 MLT and 18–24 MLT. This work indicates that the daytime eastward (nighttime westward) PPEF drives equatorward (poleward) Hall current (JH) at low latitudes, resulting in both upward (downward) ΔIRC and eastward (westward) plasma drift at the F region magnetic equator.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献