Solar Wind Current Sheets: MVA Inaccuracy and Recommended Single‐Spacecraft Methodology

Author:

Wang R.12ORCID,Vasko I. Y.13,Phan T. D.1,Mozer F. S.1ORCID

Affiliation:

1. Space Sciences Laboratory University of California at Berkeley Berkeley CA USA

2. Now at Princeton University Princeton NJ USA

3. Space Research Institute of Russian Academy of Sciences Moscow Russia

Abstract

AbstractWe present the analysis of 1,831 current sheets (CS) observed aboard four Cluster spacecraft in a pristine solar wind. Four‐spacecraft estimates of the CS normal and propagation velocity are compared with different single‐spacecraft estimates. The Minimum Variance Analysis (MVA) of the magnetic field is shown to be highly inaccurate in estimating the normal. The MVA normal often differs by more than 60° from the normal obtained by multi‐spacecraft timing method, likely due to ambient turbulent fluctuations. In contrast, the cross‐product of magnetic fields at the CS boundaries delivers the normal with an uncertainty of less than 15° at the confidence level of 90%. The CSs are essentially frozen into plasma flow, since their propagation velocity is consistent with local ion flow velocity within 20% at the confidence level of 90%. The single‐spacecraft methodology based on the cross‐product method and frozen‐in assumption delivers the CS thickness and current density amplitude within 20% of their actual values at the confidence level of 90%. The CSs are kinetic‐scale structures with half‐thickness λ from a few tenths to tens of local proton inertial length λp and scale‐dependent shear angle and current density amplitude, and . The classification of the CSs in terms of tangential and rotational discontinuities remains a challenge, because even the four‐spacecraft normal has too large uncertainties to reveal the actual normal magnetic field component. The presented results will be valuable for the analysis of solar wind CSs, when only single‐spacecraft measurements are available.

Funder

Goddard Space Flight Center

Russian Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3