Affiliation:
1. Space Science Center University of New Hampshire Durham NH USA
2. Physics Department University of New Hampshire Durham NH USA
3. Now at Boston University Boston MA USA
4. School of Mathematics and Statistics Nanjing University of Information Science and Technology Nanjing China
5. University of Colorado Boulder Boulder CO USA
6. Max‐Planck‐Institut für extraterrestrische Physik Garching Germany
Abstract
AbstractGeomagnetic storms are primarily driven by stream interaction regions (SIRs) and coronal mass ejections (CMEs). Since SIR and CME storms have different solar wind and magnetic field characteristics, the magnetospheric response may vary accordingly. Using FAST/TEAMS data, we investigate the variation of ionospheric O+ and H+ outflow as a function of geomagnetic storm phase during SIR and CME magnetic storms. The effects of storm size and solar EUV flux, including solar cycle and seasonal effects, on storm time ionospheric outflow, are also investigated. The results show that for both CME and SIR storms, the O+ and H+ fluences peak during the main phase, and then declines in the recovery phase. However, for CME storms, there is also significant increase during the initial phase. Because the outflow starts during the initial phase in CME storms, there is time for the O+ to reach the plasma sheet before the start of the main phase. Since plasma is convected into the ring current from the plasma sheet during the main phase, this may explain why more O+ is observed in the ring current during CME storms than during SIR storms. We also find that outflow fluence is higher for intense storms than moderate storms and is higher during solar maximum than solar minimum.
Funder
National Aeronautics and Space Administration
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献