Spatial Patterns and Controls on Wind Erosion in the Great Basin

Author:

Treminio Ronald S.1ORCID,Webb Nicholas P.2ORCID,Edwards Brandon L.2ORCID,Faist Akasha3,Newingham Beth4,Kachergis Emily5

Affiliation:

1. Plant & Environmental Sciences New Mexico State University Las Cruces NM USA

2. USDA‐ARS Jornada Experimental Range Las Cruces NM USA

3. Department of Ecosystem and Conservation Sciences University of Montana Missoula MT USA

4. USDA‐ARS Great Basin Rangelands Research Unit Reno NV USA

5. Bureau of Land Management National Operations Center Lakewood CO USA

Abstract

AbstractThe Great Basin of the western United States is experiencing dramatic increases in wildfire and Bromus species invasion that potentially accelerate wind erosion and plant community change. We used a wind erosion model parameterized for rangelands and standard ecological monitoring data sets collected at 10,779 locations from 2011 to 2019 to characterize potential wind erosion in the Great Basin, assess relationships between factors affecting wind erosion, and quantify effects of wildfire and invasive Bromus species on aeolian horizontal sediment flux, Q. There were 403 monitoring plots (∼3.7% of plots) with Q > 100 g m−1 d−1. Median values for the highest Q category (>100) ranged from 196.5 to 308.5 g m−1 d−1. Locations with Q > 100 g m−1 d−1 were associated with dry, low elevation areas of the Great Basin with low perennial grass and perennial forb cover, and with large bare gaps between plants. Areas with high perennial grass, perennial forb, and shrub cover had small Q (≤10 g m−1 d−1). Substantial wind erosion was predicted in areas that have experienced wildfires, but areas with multiple wildfires had a lower predicted probability of Q particularly as invasive Bromus species cover increased. Modeled Q was up to two orders of magnitude higher post‐wildfire (median 44.2 g m−1 d−1) than in intact or annual grass‐invaded regions of the Great Basin (median 0.4 g m−1 d−1). Our results reveal the complex interplay among plant community composition, wildfire, and the amount of bare ground controlling wind erosion on Great Basin rangelands.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3