Distinct Modes of Aged Soil Carbon Export in a Large Tropical Lake Basin Identified Using Bulk and Compound‐Specific Radiocarbon Analyses of Fluvial and Lacustrine Sediment

Author:

Parker Wesley G.1,Ahad Jason M. E.2,Obrist‐Farner Jonathan3ORCID,Keenan Benjamin1ORCID,Douglas Peter M. J.1ORCID

Affiliation:

1. Department of Earth and Planetary Sciences Geotop Research Center McGill University Montréal QC Canada

2. Geological Survey of Canada Natural Resources Canada Québec City QC Canada

3. Department of Geosciences, Geological and Petroleum Engineering Missouri University of Science and Technology Rolla MO USA

Abstract

AbstractThe 14C content of sedimentary organic matter (OM) and specific organic molecules provide valuable information on the source and age of OM stored in sediments, but these data are limited for tropical fluvial and lake sediments. We analyzed 14C in bulk OM, palmitic acid (C16), and long‐chain n‐alkanoic acids (C24, C26, and C28), within fluvial and lake sediments in the catchment of Lake Izabal, a large tectonic lake basin in Guatemala. We combined these measurements with bulk and compound‐specific δ13C measurements, as well as sediment organic carbon to nitrogen (OC:N) ratios, to understand the source and age of sedimentary OM in different regions of the lake catchment. Most fatty acid and bulk OM samples were characterized by pre‐modern carbon, indicating important input of aged carbon with residence times of hundreds to thousands of years into sediments. We identified two mechanisms leading to aged carbon export to sediments. In the high‐relief and deforested Polochic catchment, older OM and fatty acids are associated with low % total organic carbon (TOC) and low OC:N, indicating aged OM associated with eroded mineral soil. In the smaller, low‐relief, and largely forested Oscuro catchment, old OM and fatty acids are associated with high %TOC and high OC:N ratios, indicating export of undegraded aged plant biomass from swamp peat. The age of bulk OM and fatty acids in Lake Izabal sediments is similar to the ages observed in fluvial sediments, implying that fluvial input of aged soil carbon makes an important contribution to lake sediment carbon reservoirs in this large tropical lake.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Natural Resources Canada

McGill University

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3